Acta Cryst. (1975). B31, 2547

(+)-5-p-Hydroxyphenyl-5-phenylhydantoin Camphor-10-sulphonate Ethyl Acetate

BY M.H.J.KOCH, G. GERMAIN AND J.P. DECLERCQ

Institut Lavoisier, Université de Louvain, B-1348 Louvain la Neuve, Belgium

AND Y. DUSAUSOY

Laboratoire de Minéralogie et de Cristallographie, équipe de Recherche associée au CNRS n° 162, Faculté des Sciences, Centre de 2e cycle, Case officielle n° 140, Nancy Cedex, France

(Received 18 March 1975; accepted 8 May 1975)

Abstract. Monoclinic; $P2_1$; a = 16.409 (5), b = 7.422(3), c = 13.339(5) Å, $\beta = 114.82^{\circ}(2)$; 25° C; $C_{25}H_{26}N_2O_6S.C_4H_8O_2$; F.W. 520.3; Z = 2.

Introduction. The major metabolite of the anticonvul-

sant 5,5-diphenylhydantoin (DPH) in human liver is

the levorotatory enantiomer of 5-p-hydroxyphenyl-5-

phenylhydantoin (HPPH) (Butler, 1957).

This structure was determined in order to establish the absolute configuration of HPPH. The implications

Table 1. Experimental data

Source Cu $K\bar{\alpha}$; $\lambda = 1.5418$ Å; $\theta_{max} = 57^{\circ}$ Confidence level: 2.5 Total number of independent reflexions: 2175 Total observed: 2004

Table 2. Final positional and thermal parameters ($\times 10^4$) (with standard deviations in parentheses)

 $B = \exp\left[-\left(B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + B_{12}hk + B_{13}hl + B_{23}kl\right)\right].$

	x/a	y/b	z/c	B_{11}	B22	B ₃₃	B_{23}	B ₁₃	<i>B</i> ₁₂
C(1)	-4735(8)	-5210(19)	-2615(9)	31	89	24	- 16	27	-6
$\tilde{O}(2)$	-5018(9)	-4768(20)	— 3789 (9)	42	52	25	0	31	22
$\tilde{C}(\bar{3})$	- 5015 (9)	- 6229 (19)	- 4367 (10)	34	49	39	-18	38	-6
N(4)	- 4809 (8)	- 7739 (16)	- 3711 (8)	54	57	23	21	40	18
C(5)	- 4636 (9)	- 7271 (18)	- 2642 (10)	28	68	36	32	22	10
0(6)	-4426(7)	-8287(14)	-1862(7)	48	101	41	54	47	28
$\tilde{O}(7)$	- 5150 (7)	- 6264 (14)	- 5374 (6)	62	94	22	-11	47	3
C(8)	- 5479 (8)	- 4859 (21)	-2221(9)	34	71	45	-4	27	7
C(9)	-6380(9)	- 4706 (26)	- 2957 (11)	33	160	45	8	29	16
Č(10)	- 7046 (10)	-4562(32)	- 2609 (14)	35	240	83	- 41	55	10
C(11)	- 6826 (15)	- 4456 (36)	- 1454 (22)	57	345	77	36	85	37
C(12)	- 5923 (11)	- 4552 (33)	- 713 (12)	55	276	55	-16	61	2
C(13)	- 5275 (9)	- 4760 (27)	- 1098 (10)	46	207	34	-6	54	- 27
Č(14)	- 3846 (8)	- 4259 (19)	— 1917 (10)	23	79	36	- 9	30	29
C(15)	- 3846 (9)	-2455(20)	- 1682 (12)	35	54	73	-42	55	24
C(16)	- 3044 (9)	- 1505 (21)	-1161 (11)	25	116	65	-12	26	5
C(17)	- 2260 (9)	- 2418 (22)	- 849 (11)	27	128	31	13	16	12
C(18)	-2217(8)	-4191 (20)	- 1039 (11)	20	95	53	4	7	17
C(19)	- 3028 (16)	- 5162 (32)	- 1582 (19)	19	65	47	55	-7	120
O(20)	- 1431 (6)	-1527 (16)	- 241 (8)	25	143	57	-31	31	- 38
S(21)	-1064(2)	0 (0)	- 812 (3)	34	114	62	- 34	43	M9
C(22)	- 909 (11)	- 1290 (24)	-1831 (13)	54	150	80	- 34	74	-31
C(23)	- 605 (10)	- 294 (23)	- 2613 (12)	40	119	48	-15	31	- 14
C(24)	- 1307 (12)	- 289 (36)	- 3818 (14)	40	311	67	81	17	-3
C(25)	- 809 (14)	32 (46)	- 4549 (16)	82	485	60	24	61	- 30
C(26)	160 (13)	267 (31)	- 3674 (13)	48	208	86	23	60	11
C(27)	198 (15)	2085 (29)	- 3129 (17)	81	196	93	68	89	-21
C(28)	- 340 (13)	1764 (25)	- 2422 (17)	67	157	82	-16	68	-43
C(29)	217 (11)	- 1095 (25)	- 2746 (12)	46	147	72	-11	64	25
C(30)	55 (17)	- 3080 (34)	- 3165 (22)	106	196	121	- 89	158	2
C(31)	1094 (13)	-921 (43)	- 1688 (18)	31	378	94	135	25	26
O(32)	- 2102 (9)	- 554 (35)	- 4120 (12)	50	594	100	105	24	-47
O(33)	- 1723 (9)	1316 (17)	- 1287 (12)	55	101	155	38	113	/6
O(34)	-207 (7)	436 (22)	47 (10)	39	325	90	- 146	34	- 169
C(35)	- 2858 (17)	- 5315 (74)	5641 (26)	61	1207	1/6	41	95	- 10
C(36)	- 2497 (16)	- 5072 (52)	4790 (22)	65	462	166	-5/	/1	- 34
O(37)	- 3146 (11)	- 4702 (31)	3806 (12)	92	417	102	- 80	0	00
C(38)	- 2767 (19)	- 4590 (44)	3011 (23)	107	435	139	57	52	150
C(39)	- 3548 (17)	- 4510 (39)	1915 (22)	78	284	145	- 28	85	61
O(40)	- 1690 (12)	- 5371 (44)	5000 (15)	82	783	184	220	113	6

of these results are discussed by Poupaert, Cavalier, Claesen & Dumont (1975). The crystals were obtained by slow evaporation of a solution in ethyl acetate. The space group was determined from preliminary Weissenberg photographs. The intensities were measured with a Nonius automatic three-circle diffractometer. The experimental conditions are given in Table 1.

The structure was solved by direct methods with *MULTAN* (Germain, Main & Woolfson, 1971) and refined by block-diagonal least-squares calculations

Table 3.	Intramole	cular bor	ıd diste	ances and	angles	(with
	standara	deviatio	ns in p	parenthese	<i>s</i>)	•

$\begin{array}{c} C(1) - O(2) \\ C(1) - C(5) \\ C(1) - C(8) \\ O(2) - C(3) \\ C(3) - N(4) \\ C(3) - O(7) \\ N(4) - C(5) \\ C(3) - O(7) \\ N(4) - C(5) \\ C(5) - O(6) \\ C(8) - C(13) \\ C(8) - C(13) \\ C(8) - C(13) \\ C(10) - C(11) \\ C(10) - C(11) \\ C(10) - C(11) \\ C(11) - C(12) \\ C(12) - C(13) \\ C(14) - C(15) \\ C(14) - C(15) \\ C(14) - C(15) \\ C(14) - C(16) \\ C(16) - C(17) \\ C(17) - C(18) \\ C(17) - O(20) \\ C(18) - C(19) \\ \end{array}$	$\begin{array}{c} 1.472 \ (16) \\ 1.540 \ (19) \\ 1.541 \ (19) \\ 1.533 \ (19) \\ 1.332 \ (19) \\ 1.375 \ (18) \\ 1.375 \ (18) \\ 1.375 \ (14) \\ 1.376 \ (17) \\ 1.212 \ (16) \\ 1.394 \ (20) \\ 1.393 \ (17) \\ 1.359 \ (24) \\ 1.430 \ (32) \\ 1.359 \ (24) \\ 1.430 \ (32) \\ 1.396 \ (33) \\ 1.369 \ (25) \\ 1.375 \ (21) \\ 1.396 \ (30) \\ 1.395 \ (22) \\ 1.355 \ (22) \\ 1.347 \ (22) \\ 1.421 \ (19) \\ 1.416 \ (29) \end{array}$	$\begin{array}{c} O(20)-S(21)\\ S(21)-C(22)\\ S(21)-O(33)\\ S(21)-O(34)\\ C(22)-C(23)\\ C(23)-C(24)\\ C(23)-C(24)\\ C(23)-C(29)\\ C(24)-C(25)\\ C(24)-O(32)\\ C(25)-C(26)\\ C(26)-C(27)\\ C(26)-C(27)\\ C(26)-C(29)\\ C(27)-C(28)\\ C(29)-C(30)\\ C(29)-C(30)\\ C(35)-C(36)\\ C(36)-O(37)\\ C(36)-O(40)\\ O(37)-C(38)\\ C(38)-C(39)\\ \end{array}$	$\begin{array}{c} 1.617 \ (12) \\ 1.766 \ (17) \\ 1.397 \ (14) \\ 1.429 \ (14) \\ 1.522 \ (24) \\ 1.555 \ (23) \\ 1.579 \ (25) \\ 1.551 \ (26) \\ 1.553 \ (30) \\ 1.208 \ (26) \\ 1.537 \ (30) \\ 1.521 \ (31) \\ 1.570 \ (26) \\ 1.558 \ (34) \\ 1.558 \ (31) \ (31) $
0(2)	5) 100.7 (11)	C(14)-C(19)-C(18) C(17)-O(20)-S(21) O(20)-S(21)-C(22) O(20)-S(21)-O(33) O(20)-S(21)-O(34)	119·4 (19) 121·0 (9) 100·7 (7) 109·4 (7)
$\begin{array}{c} O(2) - C(1) - C(1) \\ O(2) - C(1) - C(1) \\ O(2) - C(1) - C(1) \\ C(5) - C(1) - C(1) \\ C(5) - C(1) - C(1) \\ C(8) - C(1) - C(1) \\ \end{array}$	$\begin{array}{c} 3) & 112 \cdot 6 & (11) \\ 14) & 109 \cdot 7 & (11) \\ 8) & 106 \cdot 4 & (11) \\ 14) & 112 \cdot 9 & (11) \\ 14) & 113 \cdot 8 & (11) \end{array}$	C(22)-S(21)-O(34) C(22)-S(21)-O(33) C(22)-S(21)-O(34) S(21)-C(22)-C(23) C(22)-C(23)-C(24)	102.5 (7) 111.3 (8) 109.3 (8) 121.3 (9) 117.3 (12) 113.6 (15)
$\begin{array}{c} C(1) - O(2) - C(1) \\ O(2) - C(3) - N(1) \\ O(2) - C(3) - O(1) \\ N(4) - C(3) - O(1) \\ C(3) - N(4) - C(1) \\ \end{array}$	$\begin{array}{c} 3) & 111 \cdot 0 & (12) \\ 4) & 110 \cdot 7 & (12) \\ 7) & 126 \cdot 1 & (13) \\ 7) & 123 \cdot 1 & (13) \\ 5) & 110 \cdot 1 & (12) \end{array}$	C(22)-C(23)-C(28) C(22)-C(23)-C(29) C(24)-C(23)-C(29) C(24)-C(23)-C(28) C(24)-C(23)-C(29) C(28)-C(23)-C(29)	120·4 (15) 116·3 (14) 101·6 (15) 100·8 (14) 101·3 (14)
$\begin{array}{c} C(1) - C(5) - N(\\ C(1) - C(5) - O(\\ N(4) - C(5) - O(\\ C(1) - C(8) - C()\\ C(1) - C(8) - C()\\ C(1) - C(8) - C()\\ C(0) - C(0) C(0) - C(0) - C(0) - C()\\ C(0) - $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} C(23)-C(24)-C(25)\\ C(23)-C(24)-O(32)\\ C(25)-C(24)-O(32)\\ C(24)-C(25)-C(26)\\ C(25)-C(26)-C(27)\\ C(25)-C(26)-C(26)-C(27)\\ C(25)-C(26)-C(26)-C(27)\\ C(25)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C(26)-C(26)-C(26)-C(26)\\ C(25)-C(26)-C($	107.5 (18) 125.4 (20) 127.0 (22) 101.1 (19) 106.6 (18)
C(9) - C(8) - C(0) -	$\begin{array}{c} 13) 117.3 (14) \\ 10) 122.1 (16) \\ 11) 119.9 (19) \\ 12) 118.1 (22) \\ 13) 120.1 (20) \\ 12) 122.3 (16) \end{array}$	$C(25)-C(26)-C(29) \\ C(27)-C(26)-C(29) \\ C(26)-C(27)-C(28) \\ C(23)-C(28)-C(27) \\ C(23)-C(29)-C(26) \\ C(23)-C(29)-C(29) \\ C(23)-C(29)-C(29) \\ C(23)-C(29)-C(29) \\ C(23)-C(29)-C(29) \\ C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29)-C(29)-C(29)-C(29) \\ C(29)-C(29)-C(29)-C(29)-C(29)-C(29)-C(29)-C(29) \\ C(29)-C(29$	$103 \cdot 1 (17) 102 \cdot 6 (16) 103 \cdot 5 (18) 103 \cdot 8 (16) 94 \cdot 4 (14) 112 \cdot 2 (16) $
C(1) - C(14) - C(16)	$\begin{array}{c} 122.3 \\ (10) \\ (15) \\ (19) \\ (12) \\ (15) \\ (12) \\ (15) \\ ($	$\begin{array}{c} C(23) - C(29) - C(30) \\ C(23) - C(29) - C(31) \\ C(26) - C(29) - C(30) \\ C(26) - C(29) - C(31) \\ C(30) - C(29) - C(31) \\ C(35) - C(36) - C(37) \end{array}$	112.2 (10) 112.6 (16) 112.4 (17) 113.1 (16) 111.2 (18) 111.5 (28)
C(16)-C(17	$\begin{array}{c} 18) & 123 \cdot 2 & (14) \\ 20) & 120 \cdot 0 & (13) \\ 20) & 116 \cdot 7 & (13) \\ 19) & 118 \cdot 8 & (16) \end{array}$	C(35)-C(36)-O(40) O(37)-C(36)-O(40) C(36)-O(37)-C(38) O(37)-C(38)-C(39)	121.8 (30) 126.3 (29) 109.0 (23) 105.4 (24)

with the programs written by Ahmed, Hall, Pippy & Huber (1966). The final value of $R = \sum ||F_o| - |F_c|| / \sum |F_o|| = 0.09$ for all observed reflexions.* The scattering factors were those given in *International Tables for X-ray Crystallography* (1962). The final parameters are given in Table 2.

Discussion. The conformation of the molecule and the numbering scheme are shown in Fig. 1 and the bond distances and angles in Table 3.

The absolute configuration of (+) HPPH is R according to the convention of Cahn, Ingold & Prelog

(1966) with the configuration of camphor as a reference (Fredga & Miettinen, 1947; Wunderlich, 1967).

The hydantoin ring is planar as in DPH (Camerman & Camerman, 1970). The angles between the phenyl groups and the hydantoin ring are given in Table 4 with the corresponding values in DPH.

Table 4. Angles between the planes of the rings in HPPH and DPH

НРРН	DPH
phenyl-hydantoin: 104°	phenyl-hydantoin: 114°
phenol-hydantoin: 104	phenyl-hydantoin: 113
phenol-phenyl: 105	phenyl-phenyl: 90

The molecules are hydrogen bonded to two neighbouring molecules as shown in Fig. 2.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). World List of Crystallographic Computer Programs, 2nd ed. Appendix, p. 52. Utrecht: Oosthoek.
- BUTLER, T. C. (1957). J. Pharm. Exp. Ther 119, 1-11.
- CAHN, R. S., INGOLD, C. & PRELOG, V. (1966). Angew. Chem. Int. Ed. 5, 385.
- CAMERMAN, A. & CAMERMAN, N. (1970). Science, 168, 1457– 1458.
- FREDGA, A. & MIETTINEN, J. K. (1947). Acta Chem. Scand. 1, 371–378.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

POUPAERT, J., CAVALIER, R., CLAESEN, M. & DUMONT, P. (1975). J. Med. Chem. To be published.

WUNDERLICH, J. A. (1967). Acta Cryst. 23, 846-855.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1975). B31, 2549

Some chlorides with the inverse spinel structure: Li_2TCl_4 (T=Mg,Mn,Fe,Cd). By C.J.J.VAN LOON and J.DE JONG, Gorlaeus Laboratories, Section of Solid State Chemistry, University of Leiden, P.O. Box 75, Leiden, The Netherlands

(Received 8 April 1975; accepted 27 May 1975)

X-ray diffraction patterns suggest that the compounds Li_2TCl_4 (T = Mg, Mn, Fe, Cd) have the inverse spinel structure. A structure refinement, based on neutron diffraction powder data, has been carried out for Li_2MnCl_4 .

c = 0.0410 (4)

 $x_{c1} = 0.2564 (1)$

Introduction

An investigation of the systems NaCl-TCl₂ and LiCl-TCl₂ (T = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ca, Sr, Ba, Pb) has been started in order to enlarge the number of structural data available for comparison with theoretically derived structure models. A systematic derivation of ^{v1}A^{v1}BX₃ structures (van Loon, 1974) has been carried out, but the number of ABX₃ compounds found within the investigated range is only very small. Three compounds, viz. NaMnCl₃, NaMgCl₃ and NaCdCl₃, have been prepared. Single crystals of one of these isostructural compounds, NaMnCl₃, have been used in a structure refinement (van Loon & Verschoor, 1973). Several compounds with different stoichiometries (Na_2TCl_4 , Na_6TCl_8 , $Na_2T_3Cl_8$; T = Mg, Mn, Fe, Cd) have been established and their structures determined (van Loon & IJdo, 1975). The compounds Na₂CoCl₄, Na₂ZnCl₄ and Li₂ZnCl₄ apparently have the chrysoberyl (Wyckoff, 1964) structure; their structure refinement will be the subject of a subsequent paper.

Experimental

LiCl was dried *in vacuo* at 400 °C. MnCl₂ was obtained by dehydrating MnCl₂.4H₂O in HCl atmosphere in steps up

to 350°C, followed by melting in dry nitrogen. Molten MgCl₂ was obtained by heating Mg metal at 900°C in a stream of dry HCl gas. FeCl₂ and CdCl₂ were obtained from the hydrates FeCl₂.4H₂O and CdCl₂. xH_2O by

Table 1. Structural data of Li₂TCl₄ compounds

Space group: Fd3m, Z=8 (origin at centre, $\overline{3}m$)

	x	у	Ζ	n			
$Li(1) \ 16(d)$	0.2	0.5	0.2	0.25			
Li(2) = 8(a)	0.125	0.125	0.125	0.25			
Mn 16(d)	0.5	0.5	0.5	0.25			
Cl $32(e)$	0.2564 (1)	0.2564 (1)	0.2564 (1)	1.0			
	а						
Li ₂ MnCl ₄	10·5031 (3) Å						
Li ₂ MgCl ₄	10·413 (1)						
Li ₂ CdCl ₄	10.637 (5)						
Li ₂ FeCl ₄	10.405 (3)						
Refinement of site occupation number							
n[Li(1) at 16(d)] = 0.284(8)							
n[Li(2) at 8(a)] = 0.216(8)							
n[Mn(1) at 8(a)] = 0.034 (8)							
$n[Mn(2) \text{ at } 16(d)] = 0.216 \ (8)$							

B = -1.94 (6)